

17. Case study-based question:

A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs. 6000. Three times the award money for Hard work added to that given for honesty amounts to Rs. 11000. The award money given for Honesty and Hard work together is double the one given for Regularity.
a. Represent the above situation algebraically and
b. Represent the above situation in matrix form.
c. Determine whether the equations are consistent or not.
d. Find the award for each value, using the matrix method.
18. Solve the following using Cramer's rule: $x+2 y-z=6, x+y+z=6, x-y-z=0$

19.	If $\mathrm{A}=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$ then show that $A^{3}-6 A^{2}+9 A-4 I=0$. Hencefind A^{-1}.
20.	Given: $\mathrm{A}=\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right)$ find $A B$.

Use the product to solve the following system of equations: $x-y=3,2 x+3 y+4 z=17, y+2 z=7$

ANSWER									
1.	d	2.	a	3.	d	4.	b	5.	a
6.	d	7.	d	8.	a	9.	C	10.	a
11.	b	12.	d	13.	a	14.	c	15.	d
16.	$200 \mathrm{~m}, 150 \mathrm{~m}$. 30000sq.m		$\begin{aligned} & \text { 17. Consistent } \\ & \text { ₹ 500, ₹ 2000, ₹ } 3500 \end{aligned}$			18.	$x=3 \mathrm{y}=2 \mathrm{z}=1$		
20.	$x=2 \mathrm{y}=-1 \mathrm{z}=4$								

